Low Power and Low Complexity Constant Multiplication Using Serial Arithmetic
نویسنده
چکیده
The main issue in this thesis is to minimize the energy consumption per operation for the arithmetic parts of DSP circuits, such as digital filters. More specific, the focus is on singleand multiple-constant multiplication using serial arithmetic. The possibility to reduce the complexity and energy consumption is investigated. The main difference between serial and parallel arithmetic, which is of interest here, is that a shift operation in serial arithmetic require a flip-flop, while it can be hardwired in parallel arithmetic. The possible ways to connect a certain number of adders is limited, i.e., for single-constant multiplication, the number of possible structures is limited for a given number of adders. Furthermore, for each structure there is a limited number of ways to place the shift operations. Hence, it is possible to find the best solution for each constant, in terms of complexity, by an exhaustive search. Methods to bound the search space are discussed. We show that it is possible to save both adders and shifts compared to CSD serial/parallel multipliers. Besides complexity, throughput is also considered by defining structures where the critical path, for bit-serial arithmetic, is no longer than one full adder. Two algorithms for the design of multiple-constant multiplication using serial arithmetic are proposed. The difference between the proposed design algorithms is the trade-offs between adders and shifts. For both algorithms, the total complexity is decreased compared to an algorithm for parallel arithmetic. The impact of the digit-size, i.e., the number of bits to be processed in parallel, in FIR filters is studied. Two proposed multiple-constant multiplication algorithms are compared to an algorithm for parallel arithmetic and separate realization of the multipliers. The results provide some guidelines for designing low power multiple-constant multiplication algorithms for FIR filters implemented using digit-serial arithmetic.
منابع مشابه
Multiple Constant Multiplication for Digit-Serial Implementation of Low Power FIR Filters
Multiple constant multiplication (MCM) is an efficient way of implementing several constant multiplications with the same input data. The coefficients are expressed using shifts, adders, and subtracters. By utilizing redundancy between the coefficients the number of adders and subtracters is reduced resulting in a low complexity implementation. However, for digit-serial arithmetic a shift requi...
متن کاملTrade-Offs in Multiplier Block Algorithms for Low Power Digit-Serial FIR Filters
In this paper trade-offs in digit-serial multiplier blocks are studied. Three different algorithms for realization of multiplier blocks are compared in terms of complexity and adder depth. Among the three algorithms is a new algorithm that reduces the number of shifts while the number of adders is on average the same. Hence, the total complexity is reduced for multiplier blocks implemented usin...
متن کاملSome Issues in Low Power Arithmetic for Fixed-Function DSP
In this paper we discuss some aspects of designing arithmetic circuits with low power consumption. We focus on digit-serial processing techniques, as well as minimum adder multipliers, and multiple constant multiplication. A review of power dissipation sources in CMOS is given. Further, we discuss some methods to decrease the power dissipation of the algorithmic, arithmetic, and architecture le...
متن کاملReversible Logic Multipliers: Novel Low-cost Parity-Preserving Designs
Reversible logic is one of the new paradigms for power optimization that can be used instead of the current circuits. Moreover, the fault-tolerance capability in the form of error detection or error correction is a vital aspect for current processing systems. In this paper, as the multiplication is an important operation in computing systems, some novel reversible multiplier designs are propose...
متن کاملModified 32-Bit Shift-Add Multiplier Design for Low Power Application
Multiplication is a basic operation in any signal processing application. Multiplication is the most important one among the four arithmetic operations like addition, subtraction, and division. Multipliers are usually hardware intensive, and the main parameters of concern are high speed, low cost, and less VLSI area. The propagation time and power consumption in the multiplier are always high. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999